学术报告

当前位置: 首页 - 学术活动 - 学术报告 - 正文
报告人:

王六权(武汉大学)

题   目:

Sign changes of coefficients of powers of the infinite Borwein product

摘   要:

We denote by $c_t^{(m)}(n)$ the coefficient of $q^n$ in the series expansion of $(q;q)_\infty^m(q^t;q^t)_\infty^{-m}$, which is the $m$-th power of the infinite Borwein product. Let $t$ and $m$ be positive integers with $m(t-1)\leq 24$. We provide asymptotic formula for $c_t^{(m)}(n)$, and give characterizations of $n$ for which $c_t^{(m)}(n)$ is positive, negative or zero. We show that $c_t^{(m)}(n)$ is ultimately periodic in sign and conjecture that this is still true for other positive integer values of $t$ and $m$. Furthermore, we confirm this conjecture in the cases $(t,m)=(2,m),(p,1),(p,3)$ for arbitrary positive integer $m$ and prime $p$.


时   间:

2022-09-07

地   点:

腾讯会议ID:358 9878 8585