Seminars

Now: Home - Events - Seminars - Content
Speaker:

Tingting Wen

Title:

Manin's conjecture for singular cubic hypersurfaces

Abstract:

Manin's conjecture predicts the quantitative behaviour of rational points on algebraic varieties. For a primitive positive definite quadratic form Q with integer coefficients, the equation x^3 = Q(y)z represents a class of singular cubic hypersurfaces. In this paper, we mainly introduce the distribution of rational points on these hypersurfaces, and describe the ideas, methods, and some results. This is a joint work with Jie Wu and Jianya Liu.


Time:

Venue:

明德楼C704

报告人 Tingting Wen 时间
地点 明德楼C704